Product of graded submodules
نویسنده
چکیده
Let Δ be an abelian group. By considering the notion multiplication of Δ-graded modules (see [7]) over a commutative Δ-graded ring with unity, we introduce the notion of product of two Δ-graded submodules which we use to characterize the Δ-graded prime submodules of a multiplication Δ-graded module. Finally we proved a graded version of Nakayama lemma for multiplication Δ-graded modules.
منابع مشابه
On graded almost semiprime submodules
Let $G$ be a group with identity $e$. Let $R$ be a $G$-graded commutative ring with a non-zero identity and $M$ be a graded $R$-module. In this article, we introduce the concept of graded almost semiprime submodules. Also, we investigate some basic properties of graded almost semiprime and graded weakly semiprime submodules and give some characterizations of them.
متن کاملOn graded classical prime and graded prime submodules
Let $G$ be a group with identity $e.$ Let $R$ be a $G$-graded commutative ring and $M$ a graded $R$-module. In this paper, we introduce several results concerning graded classical prime submodules. For example, we give a characterization of graded classical prime submodules. Also, the relations between graded classical prime and graded prime submodules of $M$ are studied.
متن کاملOn Graded Weakly Classical Prime Submodules
Let R be a G-graded ring and M be a G-graded R-module. In this article, we introduce the concept of graded weakly classical prime submodules and give some properties of such submodules.
متن کاملThe non-abelian tensor product of normal crossed submodules of groups
In this article, the notions of non-abelian tensor and exterior products of two normal crossed submodules of a given crossed module of groups are introduced and some of their basic properties are established. In particular, we investigate some common properties between normal crossed modules and their tensor products, and present some bounds on the nilpotency class and solvability length of the...
متن کاملSome applications of the product of submodules in multiplication modules
Let R be a commutative ring with identity. Let N and K be two submodules of a multiplication R-module M. Then N=IM and K=JM for some ideals I and J of R. The product of N and K denoted by NK is defined by NK=IJM. In this paper we characterize some particular cases of multiplication modules by using the product of submodules.
متن کامل